ocr技术属于什么专利(传统OCR技术)
本文目录一览:
OCR技术是什么 OCR技术的应用
OCR技术是什么:光学字符识别,大致的意思就是,图片上的文字识别为电子文本。方便复制引用;
OCR技术的应用 ;太多了,分pc端应用,手机端应用;分图片文字识别,扫描文档识别,视频文字识别;分文档识别,证件识别,银行卡号识别等……
我打了这么多字 给我分分吧,我姓任,文通的,从事ocr工作的
请问COR是什么简称
不是COR,是OCR (Optical Character Recognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程;
针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。
扩展资料
在OCR技术中,印刷体文字识别是开展最早,技术上最为成熟的一个。早在1929年德国科学家Taushek就取得了一项光学字符识别(Optical Character Recognition,简称OCR)的专利131。欧美国家为了将浩如烟海、与日俱增的大量报刊杂志、文件资料和单据报表等文字材料输入计算机进行信息处理;
从上世纪50年代就开始了西文OCR技术的研究,以便代替人工键盘输入。经过40多年的不断发展和完善,并随着计算机技术的飞速发展,西文OCR技术现已广泛应用于各个领域,使得大量的文字资料能够快速、方便、省时省力和及时地输入到计算机中,实现了信息处理的“电子化”。
参考资料来源:百度百科-OCR
OCR技术是什么?
OCR是光学字符识别的缩写,OCR技术简单来说就是将文字信息转换为图像信息,然后再利用文字识别技术将图像信息转化为可以使用的输入技术。
OCR的功能:
1、OCR识别技术不仅具有可以自动判断、拆分、 识别和还原各种通用型印刷体表格,还在表格理解上做出了令人满意的实用结果。
2、OCR能够自动分析文稿的版面布局,自动分栏、并判断出标题、横栏、图像、表格等相应属性,并判定识别顺序,能将识别结果还原成与扫描文稿的版面布局一致的新文本。
3、OCR还可以支持表格自动录入技术,可自动识别特定表格的印刷或打印汉字、字母、数字,可识别手写体汉字、手写体字母、数字及多种手写符号,并按表格格式输出。提高了表格录入效率,可节省大量人力。
扩展资料:
欲经过OCR处理的标的物须透过光学仪器,如影像扫描仪、传真机或任何摄影器材,将影像转入计算机。科技的进步,扫描仪等的输入装置已制作的愈来愈精致,轻薄短小、品质也高,对OCR有相当大的帮助,扫描仪的分辨率使影像更清晰、扫除速度更增进OCR处理的效率。
影像预处理:影像预处理是OCR系统中,须解决问题最多的一个模块。影像须先将图片、表格及文字区域分离出来,甚至可将文章的编排方向、文章的提纲及内容主体区分开,而文字的大小及文字的字体亦可如原始文件一样的判断出来。
参考资料来源:百度百科-OCR技术
什么是OCR技术
OCR (Optical Character Recognition,光学字符识别)技术是指电子设备检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程;即,针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。
比如厦门云脉公司基于成熟的OCR技术,推出了文档识别、身份证识别、票据识别、名片识别、银行卡识别、车牌识别等OCR识别应用......
什么是OCR技术?(专业术语解释)
要谈OCR的发展ocr技术属于什么专利,早在60、70年代ocr技术属于什么专利,世界各国就开始有OCR的研究ocr技术属于什么专利,而研究的初期ocr技术属于什么专利,多以文字的识别方法研究为主,且识别的文字仅为0至9的数字。以同样拥有方块文字的日本为例,1960年左右开始研究OCR的基本识别理论,初期以数字为对象,直至1965至1970年之间开始有一些简单的产品,如印刷文字的邮政编码识别系统,识别邮件上的邮政编码,帮助邮局作区域分信的作业;也因此至今邮政编码一直是各国所倡导的地址书写方式。
OCR可以说是一种不确定的技术研究,正确率就像是一个无穷趋近函数,知道其趋近值,却只能靠近而无法达到,永远在与100%作拉锯战。因为其牵扯的因素太多了,书写者的习惯或文件印刷品质、扫描仪的扫瞄品质、识别的方法、学习及测试的样本……等等,多少都会影响其正确率,也因此,OCR的产品除了需有一个强有力的识别核心外,产品的操作使用方便性、所提供的除错功能及方法,亦是决定产品好坏的重要因素。
一个OCR识别系统,其目的很简单,只是要把影像作一个转换,使影像内的图形继续保存、有表格则表格内资料及影像内的文字,一律变成计算机文字,使能达到影像资料的储存量减少、识别出的文字可再使用及分析,当然也可节省因键盘输入的人力与时间。
从影像到结果输出,须经过影像输入、影像前处理、文字特征抽取、比对识别、最后经人工校正将认错的文字更正,将结果输出。
在此逐一介绍:
影象输入:欲经过OCR处理的标的物须透过光学仪器,如影像扫描仪、传真机或任何摄影器材,将影像转入计算机。科技的进步,扫描仪等的输入装置已制作的愈来愈精致,轻薄短小、品质也高,对OCR有相当大的帮助,扫描仪的分辨率使影像更清晰、扫除速度更增进OCR处理的效率。
影象前处理:影像前处理是OCR系统中,须解决问题最多的一个模块,从得到一个不是黑就是白的二值化影像,或灰阶、彩色的影像,到独立出一个个的文字影像的过程,都属于影像前处理。包含了影像正规化、去除噪声、影像矫正等的影像处理,及图文分析、文字行与字分离的文件前处理。在影像处理方面,在学理及技术方面都已达成熟阶段,因此在市面上或网站上有不少可用的链接库;在文件前处理方面,则凭各家本领了;影像须先将图片、表格及文字区域分离出来,甚至可将文章的编排方向、文章的题纲及内容主体区分开,而文字的大小及文字的字体亦可如原始文件一样的判断出来。
文字特征抽取:单以识别率而言,特征抽取可说是OCR的核心,用什么特征、怎么抽取,直接影响识别的好坏,也所以在OCR研究初期,特征抽取的研究报告特别的多。而特征可说是识别的筹码,简易的区分可分为两类:一为统计的特征,如文字区域内的黑/白点数比,当文字区分成好几个区域时,这一个个区域黑/白点数比之联合,就成了空间的一个数值向量,在比对时,基本的数学理论就足以应付了。而另一类特征为结构的特征,如文字影像细线化后,取得字的笔划端点、交叉点之数量及位置,或以笔划段为特征,配合特殊的比对方法,进行比对,市面上的线上手写输入软件的识别方法多以此种结构的方法为主。
对比数据库:当输入文字算完特征后,不管是用统计或结构的特征,都须有一比对数据库或特征数据库来进行比对,数据库的内容应包含所有欲识别的字集文字,根据与输入文字一样的特征抽取方法所得的特征群组。
对比识别:这是可充分发挥数学运算理论的一个模块,根据不同的特征特性,选用不同的数学距离函数,较有名的比对方法有,欧式空间的比对方法、松弛比对法(Relaxation)、动态程序比对法(Dynamic Programming,DP),以及类神经网络的数据库建立及比对、HMM(Hidden Markov Model)…等著名的方法,为了使识别的结果更稳定,也有所谓的专家系统(Experts System)被提出,利用各种特征比对方法的相异互补性,使识别出的结果,其信心度特别的高。
字词后处理:由于OCR的识别率并无法达到百分之百,或想加强比对的正确性及信心值,一些除错或甚至帮忙更正的功能,也成为OCR系统中必要的一个模块。字词后处理就是一例,利用比对后的识别文字与其可能的相似候选字群中,根据前后的识别文字找出最合乎逻辑的词,做更正的功能。
字词数据库:为字词后处理所建立的词库。
人工校正:OCR最后的关卡,在此之前,使用者可能只是拿支鼠标,跟着软件设计的节奏操作或仅是观看,而在此有可能须特别花使用者的精神及时间,去更正甚至找寻可能是OCR出错的地方。一个好的OCR软件,除了有一个稳定的影像处理及识别核心,以降低错误率外,人工校正的操作流程及其功能,亦影响OCR的处理效率,因此,文字影像与识别文字的对照,及其屏幕信息摆放的位置、还有每一识别文字的候选字功能、拒认字的功能、及字词后处理后特意标示出可能有问题的字词,都是为使用者设计尽量少使用键盘的一种功能,当然,不是说系统没显示出的文字就一定正确,就像完全由键盘输入的工作人员也会有出错的时候,这时要重新校正一次或能允许些许的错,就完全看使用单位的需求了。
结果输出:其实输出是件简单的事,但却须看使用者用OCR到底为了什么ocr技术属于什么专利?有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和输入文件一模一样,所以有原文重现的功能、有人注重表格内的文字,所以要和Excel等软件结合。无论怎么变化,都只是输出档案格式的变化而已。